Pandas Simple Programs
Customarily, we import pandas as follows
See the top & bottom rows of the frame using head() and tail()
Describe shows a quick statistic summary of your data
For getting a cross section using a label
Select via the position of the passed integers
By integer slices, acting similar to numpy/python
pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations.
Examples:
Example1:
import pandas as pd
data=pd.read_csv("Pandas.csv")
data.drop_duplicates()
mark=data["marks"]
marmean=mark.mean()
data.fillna(marmean,inplace=True)
data['rollno'].describe()
data['rollno'].value_counts().head(10)
data.corr()
Output:
rollno marks
rollno 1.000000 -0.028862
marks -0.028862 1.000000
Example2:
import pandas as pd
data=pd.read_csv("Pandas.csv")
#mark=data[["marks","rollno"]]
#type(mark)
#print(mark.head())
#print(data)
xy=data.iloc[1:5]
xy
Output:
name rollno marks
1 John 1206 15.0
2 Jane 1207 18.0
3 Kane 1250 16.0
4 William 1236 13.0
Example3:
import pandas as pd
data=pd.read_csv("Pandas.csv")
#data[data["marks"]>=13]
#cond=data["rollno"]==1236)
#cond
data[data["rollno"]<=1210].head(10)
#con=data.iloc[1:5]
#print(con)
Output:
Example4:
import pandas as pd
data=pd.read_csv("Pandas.csv")
data[(data["rollno"]==1201) & (data["marks"]>=15)]
Output:
name rollno marks
0 Shashi 1201.0 20.0
10 Shashi 1201.0 20.0
Example5:
import pandas as pd
data=pd.read_csv("Pandas.csv")
data.dropna()
data.drop_duplicates(inplace=True)
#data[data["name"].isin(["Shashi","Jane"])]
#data[(data["marks"]>15) & (data["age"]>17)]
def topper(x):
if(x<15.0 and x>18.0):
return "Good"
elif(x<18.0):
return "Excellent"
elif(x>15.0):
return "Improve Next"
data["Suggestions"]=data["marks"].apply(topper)
data
Output:
Example6:
import pandas as pd
import matplotlib.pyplot as plt
data=pd.read_csv("Pandas.csv")
data.dropna()
data.drop_duplicates(inplace=True)
#data.plot(kind="bar",x="rollno",y="marks",title="rollno vs marks")
data["marks"].plot(kind="hist",title="marks")
data["age"].plot(kind="box")
Output:
0 Comments
Post a Comment